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I. INTRODUCTION

With a present annual consumption estimated at 4.5 billion tons (Kumar

Mehta, 1986), concrete undoubtedly ranks at the very top of the list of most

popular materials. The availability of the constituent materials, economy of

production (often at the site), simplicity of the manufacturing procedures,

formability and a bevy of other desirable properties present compelling rea-

sons for the continuing popularity of concrete.

On the debit side, a relatively modest tensile strength of concrete is a

limiting factor with regard to utility and a cause of concern in design and

.- .utilization. Even before its ultimate demise, the nonlinear response of a

concrete structure (i.e., gradual deterioration of its strength) is traceable

to the growth of a large number of microcracks distributed rather evenly over
a large part of the volume (damage). After some early and futile attempts to

modify the venerable theory of plasticity for the analysis of concrete struc-

tures, it became obvious that a rational constitutive model must be based on

V. the physical reality and account for microcracking as the dominant aspect of

the deformation process.

The title continuum damage mechanics (CDM) is often used to label a loose

agglomeration of analytical models formulated with an express purpose of deal-

ing with brittle response of solids. The continuing reliance of these models

on the macro observations resulted in a host of different and often contra- o

dicting theories. With a generous helping of 'material' parameters, thesetheorier

S phenomenological models are shown to a fit a particular set of experimental

data with an often suspicious accuracy. The ensuing controversy, related to

the selection of the 'best' or even most appropriate model for a particular-

problem, was typically approached using clever little artifices emphasizing--

unrealistic assumptions regarding crack distribution. A lility Ceo-

Dist special
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This state of affairs (summarized briefly In Krajcinovic 1984), typical

of infancy of most branches of continuum mechanics, has nevertheless ran its

course. The recently emerging micromechanical models (M. Kachanov 1982, 1987,

Horii and Nemat-Nasser 1983, 1986, Krajcinovic and Fanella 1986, Krajcinovic

and Sumarac 1987, t.a., Sumarac and Krajcinovic 1987, etc.) suggest in no

uncertain manner that most of the existing phenomenological models stand on a

very shaky ground. This, of course, just proves that every attempt to model

an irreversible process on the basis of macro observations presents a risky

venture having a modest chance of successful outcome.

The objective of this research program was to examine the essential

structure of the micromechanical (or, more accurately, mesomechanical) models

outlining the assumptions needed to ensure their tractability and, conse-

quently, their practical utility. Even more importantly, the investigation

was focused on the mechanical response of the concrete and use of these micro-

mechanical theories to establish reliable analytical tools for the prediction

of the response of concrete in a wide set of circumstances.

II. ANALYTICAL MDDEL

II.1 The Question of Scale and the Danafe Variable

The early efforts in developing the CDM theories for dealing with brittle

processes were almost exclusively phenomenological. One of the basic tenets

which both divided and unified these efforts was that it was deemed necessary

to divine the mathematical representation of a somewhat nebulous 'damage

(internal) variable' up front. None clung to this 'principle' more tena-

ciously than those enamored with constructing little clever stratagems

demonstrating perceived advantages of a particular representation. The ensu-

ing confusion in having to decide upon the 'best', or at the very least the
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most suitable, of these theories could not be underestimated (see, Krajcinovic

1984).

Not surprisingly the answer to this thorny question required an inquire

into the physics of the phenomenon and the structure of the solid. In order

to define the damage, it turns out to be necessary to consider two scales:

macro-scale on which the solid is regarded as continuum and the damage is rep-

resented by a continuous function of coordinates and the meso-scale on which

the solid is inhomogeneous and some of the fields discontinuous. The intro-

duction of two scales implies existence of the unit cell, or representative

volume, (Hill 1967) which, loosely speaking, presents the smallest volume of

material which in a given sense responds as a macro-continuum. Mathemati-

cally, a unit cell maps on the material point of the continuum. The

configurational space (recorded history H) attached to each point of the con-

tinuum must, therefore, contain necessary information defining [9]*:

- number, type, position, size and orientation of defects,

- number and orientation of cleavage and slip planes, and

-morphology of energy barriers (such as aggregate facets) within the

unit cell.

, In contradistinction to ductile deformation, during which the material

'slips through' the crystalline lattice, the damage can be defined as a pro-

cess during which the material remains 'in place' while the lattice degrades

through the loss of bonds. Since the elastic compliance of a solid locally

depends on the type, distribution and density of primary bonds, it is not sur-

prising that it changes only in the course of brittle processes. In fact, in

a complete accord with the original Kachanov's (1958) model the extent of dam-

The number in brackets refers to the list of papers summarized in this Report

(see Chapter VI).

W"
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. age can be measured by the change in the elastic macro-compliance of the solid

(Chaboche 1979, Lemaitre and Chaboche 1985). This characterization is also

suggested by Hart, et al. (1975) who argued that the change in compliance

being a readily identifiable and measurable property of the specimen is a nat-

ural choice for the internal variable.

On the meso-scale, the ruptured bonds cluster into cracks along the

aggregate facets. Assuming that each of N planar cracks within a unit cell

mapping on a point x can be regarded as elliptical the configurational space

(or history H) defining the 'damage' in the point contains 8N variables:

three scalars defining position, three Euler angles defining orientation and

*- two scalars defining size of each crack.

A much less ambitious description of damage involves only 4N variables

assuming cracks to be circular and disregarding their exact position within

the unit cell. The 'damage' is then described by N doublets w (x; A, n),

where A is the relative void area in the plane with normal n through the

V point x (Krajcinovic 1985, Ilankamban and Krajcinovic t.a.).

An even simpler characterization is possible when the crack distribution

and orientations are perfectly random rendering the solid isotropic. In that

case, a single scalar 'crack density parameter' (Budiansky and O'Connell 1976,

* Lemaitre and Chaboche 1985) suffices. Every successive approximation enhances

the tractability at the expense of the rigor and possibly accuracy.

An important aspect of the definition of 'damage parameter' is related to

the unilateral constraint which a crack places on the displacement field.

Consequently, all cracks must be divided into open and closed cracks (Horii

and Nemat-Nasser 1983, Krajcinovic 1985, etc.). In the first case, the dis-

placement field is discontinuous while the closed cracks have no effect on the

displacement and, therefore, compliance as well.,1

0'

N/ %i
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11 .2 Thersodymamic Considerations

Consider a perfectly elastic material in a completely inert envirorment.

Restricting discussions to perfectly brittle deformation processes, the cur-

rent state is defined locally by the temperature T, elastic strain tensor

and a history parameter H.

According to the first law of thermodynamics, the sum of rates of changes

in the mechanical work dW and heat energy dQ must be balanced by the sum

of rates of changes of the internally stored energy du and the energy needed

for the creation of new, internal surfaces (rupture of bonds) dD, i.e.,

dW + dQ = du + dD (1)

where all terms in (1) are taken per unit of volume.

Introducing the dual (Gibbs) potential density function p, the entropy

production (Clausius-Duhem) inequality can be, for dT grad T 0, written

as

dI- dD 1 0 (2)

where the superscript (I) denotes irreversible change.

In accord with the adopted definition of the damage, the energy dissi-

pated on the creation of new internal surfaces is proportional to the increase

in the crack surfaces. Thus, denoting by 6(L) advance of the crack front

* L in the direction of its normal, the energy dissipated on the creation of

new surfaces can be written in form (Rice 1975)

" dD = 7 6k dL (3)

L

where I is the surface energy.

N_.V.N. -%.%
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Finally, since the energy release rate G (Rice 1978) is defined as

G = -(ai/aZ) (4)

the inequality (2) can be rewritten in a more familiar form (Rice 1975) as

f (G-2y) 6k dL 2 0 (5)
- iL

where G = J is the energy release rate density. The inequality (5) is typi-

cally assumed to be satisfied pointwise on L, leading to the more common

form of the stability criterion

(G-27 )8k > 0 (6)

valid both for rapid cracking and healing. In the language of thermodynamics,

6Z~ is the flux, G the affinity (driving force) and 21 the resistive

force. Consideration of a more general crack growth pattern will result in

the increase of the number of fluxes and their conjugate forces (Chudnovsky

1987).

11.3 Process Model

A- The essential form of a rational analytical model for the analysis of the

brittle response of a solid is dictated by the conflicting requirements of

computational facility and simplicity on one and the rigor in modelling the

underlying physics of the phenomenon on the other hand. The nonlinearity in

the macro response of the solid is obviously just the reflection of the irre-

versible rearrangements of the mesostructural fabric of the solid.

Consequently, a realistic theory must include a rational model of the dominant

mechanism of these irreversible changes as a basic building block. Since the

%
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- mesostructural fabric is almost never deterministic in nature, such a model

will rest on appropriate stochastic distributions of the state and internal

variables of the problem.

However, for the reasons of computational efficiency our models exhibit

strong preference for the deterministic continua and gradually varying contin-

uous functional representations of all variables.

Consequently, a model satisfying both sets of requirements will consider

both scales. The mesomechanical models of the dominant energy dissipating

mechanisms are (via an appropriate homogenization algorithm) embedded into a

deterministic relation mapping macro stresses on macro strains in an effective

continuum. This effective continuum approximates in a physically justifiable

sense the actual solid with locally discontinuous fields.

A process model includes both the descriptions of the state (compliance

tensor) and the manner in which the state changes (kinetic equations or the

'damage law'). Even though related these two tasks are sufficiently different

and will be discussed independently.

11.4 Compliance Tensor

Owing to a large number of stochastic parameters (8N) needed to define

S the 'damage' within the representative volume mapping on a material point x

of the effective macro-continuum, it is apparent that the establishment of an

5 analytical model claiming practical utility requires introduction of some sim-

plifying assumptions. Some of these assumptions are neither very restrictive

nor controversial. For instance, on the basis of available computations, it

is commonly accepted that the ellipticity of the microcracks does not have a

strong effect on the compliance. Consequently, for all practical purposes
'-

every microcrack can be assumed as being circular in shape without a serious

loss of accuracy.

,% %
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A more restrictive assumption is associated with the application of the

effective field theories (Mura 1982, Kunin 1993, etc.) according to which the

"' external field of each crack weakly depends on the exact position of other

-" cracks. The overall macro compliance of the solid can be then written in form

.1

S(x.H) = S°(x) + (7)-, )(xH)
k

0where S (x) is the compliance of the virgin material (which might reflect

the anisotropy other than that introduced by the damage), while H is the

recorded history (reduced here to 3N angles and N radii) defining the

* 'damage'. The second term in the above expression defines the compliance

attributed to N open cracks within the representative volume. Within the

-. framework of the effective field theories [1] each crack can be considered as

a single crack embedded into a homogeneous (effective) continuum which in some

.'self-consistent' and smoothed sense reflects the presence of other (N-i)

cracks. The domain of validity of this class of methods is restricted to the

cases characterized by modest levels of the direct interaction between the

adjacent cracks, i.e., to low and moderate crack concentrations.

The effective field theories, in conjunction with the Eshelby inclusion

I@ method, allow for a relatively straightforward determination of the overall
compliance of the microcrack weakened solid whenever the solutions for the

corresponding eigenstrains are available. Specifically, the work performed

within this project was focused on the two levels of approximation:

- Taylor model (TM) which completely ignores the crack interaction

assuming that each crack is embedded into the virgin (undamaged)

solid, and

'0

"-'p

@ii
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-the self-consistent model (SCM) which assumes that the influence

of the adjacent cracks is sufficiently well specified by the vol-

ume density and orientation of the adjacent cracks and that the

external stress field of each crack is equal to the macro-stress.

In the case of the TM, a closed-form, analytical solution for the eigen-

strains (i.e., crack opening displacement) is available whenever the solid is

originally isotropic. Consequently, the TM is very appealing in application

even though its accuracy might be questionable in case of larger crack concen-

trations. It is obvious, though, that the Taylor model provides the lower

bound on the strains since it overestimates the rigidity of the solid ignoring

the adjacent cracks. The SCM model while obviously more accurate leads to

much more difficult computational algorithms. First of all, the analytical

expressions for the crack opening displacements are available only for the

isotropic and transversely isotropic solids. Secondly, even in these cases

the crack opening displacements (eigenstrains, see Hoenig 1978,1979, Sih, et

al. 1965, etc.) depend both explicitly and implicitly on the compliance of the

effective solid. Hence, a purely analytical solution is not possible and even

the numerical solution requires application of an iterative algorithm similar

to that familiar from the slip theory models.

The principal advantage of the TM and SCM is that the total (macro)

strain in a material point (on which the corresponding representative volume

is mapped) can be written in the form of a sum

N
+ E _6k ) (8)

k=1

where )(X) is the eigenstrain 'in' the n-th crack, while the sum extends

over all . open cracks in the representative volume. Also, a°(x) is the
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elastic strain related to the average (macro) stress through the familiar

equation

e S : (9)

The eigenstrain 'in' the n-th crack, averaged over the volume V of the

unit cell, may be written (Mura 1982, Kunin 1983, M. Kachanov 1982, Horii and

Nemat-Nasser 1983, [4,5,9], etc.) as

"ij(n) = J (bini + bjn,) dA (10)
,-.' A(n)

where A(n) is the area of the crack surface, n the normal to the crack

surface and b the displacement discontinuity vector (crack opening displace-

ment). The eigenstrains can, at least in principle, be always written in

terms of the average stresses (Hoenig 1978, Mura 1982)

e(n) = SAn): (11)

Consequently, the overall compliance S(x,H) can indeed be readily writ-

ten as a juxtaposition of compliances attributable to individual cracks (12)

and the original, elastic compliance (10) of the matrix, in a form suggested

by (7).

The major problem consists of the determination of the displacement dis-

continuity vector b which is needed in the computation of the eigenstrains

from (11). Whenever a closed-form analytical (exact or approximate) solution

'7- for b exists the proposed model can readily be applied. However, at the

present time the solutions for the crack opening displacement exist only for

cracks embedded in isotropic or transversely isotropic solids (Sih, et al.

1965, Hoenig 1979). In all other cases the crack opening displacements can be

0%
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determined only after protracted and non-trivial arduous computational effort

(Mura 1982). In some cases (Horli and Nemat-Nasser 1986, [81) it is possible

-'"- to find surprisingly accurate approximate expressions for the crack opening

- displacements b for rather complex crack geometries (kinked cracks).

The crack opening displacements in the case of isotropic solids (TM) can

be written [2] for a penny-shaped crack of radius a

b' = (a -r2) 1 / 2 Blj0 3j (12)

where r < a is the radial coordinate, while the primes indicate the refer-

ence to the local coordinate system embedded in the crack such that n3

@ coincides with the normal to the crack surface. The tensor B can then be

written in a simple form

B' =8 - 6i36j3 + - (6 i + 66) (13)i- irE S6 -J 3

where 6 are the Kronecker-delta symbols, v Poisson's ratio and E the

elastic modulus of the isotropic, elastic solid.

The global (unprimed) an local (primed) coordinate systems are related

by means of the conventional rotation matix

ni = gijnj (14)0P

The components of g are the sines and cosines of the Euler angles subtended

by the axes of the global and local coordinate systems. Substituting (13) and

. (14) into (8) the compliance attributable to the crack opening can be written

in a very simple form as

2* 8(1-v ) innj nm

Sijmn - 3VE(2-v) im

+ 6jmnnni + bjnninm -
2vninjnmnn) (15)

et4
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In practical applications since the number of cracks N is typically very

large, the sum in (15) is recast into a triple integral using the probability

density functions for the crack orientations and sizes. These functions can

be readily established from the elementary considerations of the aggregate

geometry [2,4,5,8,9].

The determination of the compliance attributable to open cracks is a.-
great deal more complicated in the case of the SCM. Since simple enough solu-

tions for the crack opening displacements exist only for the two-dimensional

. case of transverse isotropy (Sih, et al. 1965) the applications are restricted

only to the simple stress fields. Even in the case of the transverse isotropy

[* the crack opening displacements are both implicit and explicit functions of

. -- the total compliance of the solid. The implicit dependence involves the roots

of the fourth order characteristic equation (Sih, et al. 1965, Horii and

Nemat-Nasser 1983, [5,9]). Using a special transformation the characteristic

" equation was reduced in [5,9] to a biquadratic equation admitting analytical

solutions for the roots. Nevertheless, the determination of the vector b

involves guessing the anisotropy ratio m = S22/S1l between the axial and

lateral compliance. Once b is determined on the basis of the initial guess

for m, the compliances and the ratio m can be computed in a closed form

*. for every value of the externally applied load. If the predicted and computed

values for m are sufficiently close the computation can proceed to the

subsequent load increment.

." II.5 Kinetics of the Crook Grow

- The final step in the formulation of the constitutive law consists of the

0 determination of a functional relationship (damage law) between the increase

of the microcrack radius and the increment of the crack driving force (energy

0,

-4'~~~~ %'4 4 '
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release rate G). Typically, a damage law is deduced on the basis of hypothet-

ical arguments based almost exclusively on macro observations. However, as

shown by Krajcinovic and Fanella (1986), a constitutive relationship can actu-

yally be derived considering stochastic distributions of weak planes and energy

barriers on the mesoscale.

In determination of the crack growth pattern of a meso-crack, the sto-

chastic distribution of surface energies (geometry of cleavage planes and

grain boundaries) plays a major role. In principle, as the stress levels are

gradually raised, a crack can grow (penetrate successive energy barriers)

either in a steady (smooth) mode consisting of an infinite number of continu-

ously changing values (aM) satisfying (6) or in a jerky manner emphasizing

long periods of languor (W = 0) interspersed by short, almost instantaneous

bursts of rapid changes in the crack size k. The latter case appears to be

more common in the case of brittle and semi-brittle solids in predominantly

tensile regimes. The acoustic signature of the energy AD released during

the rapid increase in the crack size is readily recorded in tests (Holcomb and

Costin 1986).

-a The crack stability criterion is derivable directly from the entropy pro-

-" duction inequality (6). The crack growth is stable if

.. 8G
-G < 0 (16)

and unstable when

S. OG
'a62. > 0 (17)

In the first of the two cases a crack will grow in a steady mode as the stress

increases. The second case is characteristic of jerky changes in the crack

size.

We V.

Zoe *
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More specific arguments leading to the formulation of kinetic equations

for concrete will be discussed in the sequel.

III. APPLICATION TO CONCRETE

III.1 Pierostructure of Concrete

Structurally, concrete is a particulate composite of stone and sand

aggregate embedded in the cement paste matrix serving as a binding agency.

Disregarding the finer points of its chemical compositions and chemical reac-

tions during the hardening process for the present purposes it suffices to

state that the mechanical response of concrete directly reflects:

0

(i) its composition, i.e., toughnesses of the constituent phases

and the dispersion, volume fraction, size and shape (sieve

-gradation) of the coarse aggregate as well as its surface tex-

ture. and

(ii) the size and distribution of the initial cracks (and porosity

" of the matrix) attributable to the hydration heat and free

water migration (popularly classified as shrinkage, bleeding,

creep, aging, etc.).

'I..

*_ The mesostructural morphology and fabric of concrete is to a large extent
.

responsible for the pattern of the microcrack (or 'damage') evolution. The

so-called transition zone, consisting of relatively large crystals of ettring-

6.- ite and calcium hydroxide (Kumar Mehta 1986), is the weak link of the

/- .. composite. The relatively high porosity and plate-like form of the hydroxide

crystals are reflected through inferior levels of surface energy. Addition-

ally, the stress concentrations resulting from the disparate heat conduction

and elastic parameters of the aggregate and cement paste further promote the

Lit
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transition zone as a preferential site for the nucleation and path of propaga-

tion of microcracks.

The existence of interfacial cracks before the application of mechanical

loads would classify concrete as a 'cleavage 1' solid (Ashby 1979). It seems

safe to assume that most of the cracks are already present in concrete and

that the difference between the imparted and stored energies during the

exploitation is dissipated primarily on the growth of the already existing

interfacial cracks.

The scenario depicting the crack growth patterns depends on the morphol-

ogy of the mesoscale and the stress field. As already mentioned, a microcrack

will start increasing in size if and only if the instability criterion (7) is

satisfied. The energy release rate (driving force) G is a function of the

macro-stress field in the region surrounding the crack tip. Thus, the deter-

mination of G = J intrinsically involves averaging (associated with the

integration) and is, therefore, less susceptible to local fluctuations of

stresses. In contrast, the surface energy y is a random variable character-

ized by significant variations from some (often meaningless, see papers in

Wittmann 1983) average values associated to the macro specimen.

The distribution of the surface energy reflects the dispersion of the

coarse aggregates on the mesoscale. Specifically, the experimental measure-

ments indicate (Mindess and Young 1981, Zaitsev 1982 and 1983, etc.) that for

a typical concrete mixture

a >> yc  2ytz (18)

where the subscripts (a), (c) and (tz) refer to the aggregate, cement paste

and the transition zone, respectively.
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Consequently, an interfacial crack for which G ) 2y will become unsta-

ble and start propagating in a runaway fashion along the interface (through

the transition zone) until it reaches the edge of the facet. At this point

the crack must either kink onto the sequent interface (following the aggregate

contour) or commence propagation through the cement paste having superior sur-

face energy (fracture toughness). Thus, a crack is trapped at the aggregate

facet edge either by the decreasing driving force (associate with kinking) or

by the increasing resistance. In either case additional energy must be

imparted externally for the crack to continue its growth.

According to this scenario, each crack grows in a spasmodic fashion remi-

niscent of the jerky motion of dislocation across a slip plane of

inhomogeneous slip resistance. The magnitude of the driving force G depends

on the stress field, i.e., on the crack radius and it orientation with respect

to the principal stress axes. Since both the crack size and orientation are

random variables the cracks will become unstable sequentially as the load is

* incremented. This conclusion was confirmed experimentally through acoustic

emission tests (see the paper by Diederich, et al., in Wittmann 1983 and Hol-

comb and Costin 1986). Hence, the energy is indeed dissipated not

continuously but in a sequence of successive bursts associated with sudden

*jumps in the size of individual microcracks.

The basic idea and the simple elegance of the proposed derivation of

kinetic equations can best be illustrated on the case of uniaxial tension

[2,9]. Neglecting, for simplicity, the Mode II cracking the stability cri-

terion (6) for the k-th crack within the representative volume can be written

using the stress intensity factors as

f)(k) Ik) - KIC 0 (19)

r ,

A,4L
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The critical stress intensity factor KIC is a random function which follows

the ratios for the surface energies (18). Thus the elastic region f < 0 is

a polyhedron defined by hypersurfaces (19) in the stresss space. Furthermore,

in the observed case, for a penny-shaped crack with a normal n subtending

angle 0 with the tensile axis the expression (19) reads

2I~
f(k) = 2q cos - KIC 0 (20)

where q is the externally applied traction.

Consequently, an original interfacial crack of radius ao  for which the

inequality

2cosO 0vra > - K(21)
0~2 KIC

is satisfied will become unstable and commence unstable propagation through

the transition zone (along the aggregate facet) until it gets arrested at the

facet edge by the cement paste having superior toughness (18).

SThus, at each value of the externally applied tensile tractions q, it is

possible to distinguish the cracks which will retain their original size (f <

p 0) from those which will occupy the entire surface of the facet (f > 0). The

. hypersurface f = 0 is depicted in the space (q,aB) in Fig. 1. The cracks

which already changed their length are defined by doublets (a,) belonging to

the upper right corner of the cube defining all possible crack geometries (DM

is the diameter of the largest aggregate facet). Once the crack radii are

0., known for all orientations and loads, the compliance is computated from (15)

and (7) or similar relations in the case of SCM [5,9].

Since the number of microcracksis large, and since their orientations and

.4 sizes vary almost continuously over wide ranges, the large number of events on

4,. the mesoscale following each other in a close sequence translates into a rela-

a.
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tively smooth and gradual change of the macro-response (decrease of stiffness)

observable in experiments. This lends the credence to the wisdom of the fun-

N damental strategy on which the proposed methodology is based.

111.2 Failure Modes

Succinctly stated the ultimate failure of concrete (Rudnicki 1979, Horii

and Nemat Nasser 1986, etc.) can occur either as a result of the runaway pro-

pagation of a single, preferentially oriented and located, microcrack or as a

result of a localization process during which the driving force is rapidly

enhanced through the interaction of closely spaced microcracks. Generally

speaking, in the case of homogeneous (or nearly homogeneous) stress fields for

which at least one of the principal stresses is tensile, the energy release

rate G of the critical crack will exceed the largest energy barrier in its

path and commence unstable growth leading ultimately to the macro-failure. In

such a case, the crack density during the entire deformation process including

the part at the incipient failure is typically low.

In absence of the tensile stresses, characteristic of the compression of

the laterally confined concrete specimens subjected to compressive stresses,

each crack grows in a stable fashion with the increasing stresses. Conse-

quently, the sudden and rapid onset of instability must be attributed to the

nonlinear increase of the driving force G related to the interaction of the

approaching microcracks. The eventual macro-failure features a thin band of

S. closely-spaced interacting microcracks which eventually coalesce into a macro-

crack of critical size. In sharp contrast to the preceding case the crack

density, within these bands just prior to the onset of localization, Is typi-

cally high and an appropriate analysis requires incorporation of the direct

crack interaction into the model.

gr.
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SThe failures in the cases of inhomogeneous state of stress will, in gen-

eral, involve even more complicated crack growth patterns. The discussion of

these cases is considered beyond the scope of this Peport.

III. Uniaxlal Tension

The initial effort in the formulation of the proposed model was centered

. on the uniaxial tension of a prismatic concrete specimen [2]. To test the

feasibility of the strategy only the TM was considered initially, assuming a

limited, uniform probability density function for the aggregate facet sizes.

The final relation between macro stresses and macro strains was derived in

closed form. This enabled a straightforward determination of the influence of

-.7 the sieve grading (difference in size between the largest and smallest aggre-

-. 9...-.gate) and initial defect distribution (due to bleeding) on the response.

It is important to note that the formulation of the model did not require

.-a single new (additional) and experimentally identifiable material parameter.

- In addition to the elastic moduli the implementation of the model requires

only the knowledge of the critical stress intensity factors for the cement

paste and the transition zone, volume fraction of the coarse aggregate and the

distribution of its sizes. Unfortunately, the existing experimental data sel-

dom if ever document the latter data. Thus, the close fit between the

experimental data and computations obtained for a specific case of a given

volume fraction could not be tested over a wider range of parameters.

S,, The final macro-failure was assumed to occur as soon as the first crack

.l9: starts propagating through the cement paste. This assumption was supported by

a simple analysis, based on the small particle statistics, according to which.9

the mean free path between the adjacent particles was found to be rather large

[10]. Consequently, it was determined that a crack propagating through the

X- r 1

.9.'N_-
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cement matrix will be rather large at the moment when it encounters an aggre-

gate in its path. While possible, it is deemed unlikely that such a crack can

be arrested at that point. It is also important to notice that the crack den-

sity at the incipient macro-failure was found to be quite moderate reducing

the possible significance of the crack interaction.

The stress-strain curve for a specific magnitude of initial (bleeding)

defects p and the ratio -' of the smallest to largest aggregate facet is

shown in Fig. 2. The apparent Poisson ratio, reflecting relative 'softening'

(anisotropy) in the axial direction, is plotted in Fig. 3. The dependence of

the total strain on the size of the initial (bleeding) defects is depicted in

* Fig. 4.
r

While working on this problem, it became obvious that the proposed model

by its very nature presents a natural choice for the consideration of the size

effect. The driving force G is proportional to the size of the crack and

inversely proportional to the angle subtended by the normal to the crack sur-

dy face and the tensile axis. The probability that a large crack will be found

in a plane perpendicular to the tensile axis is obviously proportional to the

volume of the specimen (number of cracks). Consequently. it was only neces-

sary to determine the joint probability function relating the crack sizes and

* orientations with the number of samples (cracks in the specimen). The ensuing

results [6] proved to be in close qualitative and even quantitative agreement

with the experimentally observed trends.

*. The computations of the size effect according to the developed model

(triangles) are compared with some available experimental data (squares) and a

widely used empirical relation (hexagons) in Fig. S. In view of the relative

simplicity of the proposed model the obtained fit is quite remarkable.
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The simplicity of the TM and the availability of simple, analytical rela-

tions between the macro-stresses and macro-strains is a very appealing feature

in practical computations. Nevertheless, it was strongly felt that a

rational estimate of the accuracy of the TM (i.e., estimate of the error asso-

ciated with the total neglect of the crack interaction) was needed. Thus, it

became necessary to use the SCM for the case of the uniaxial tension and

.* determine the accuracy of the simpler TM based theory.

As expected, the SCM based theory becomes much more complex [4,5,9,11]

and not amenable to a closed-form, analytical solution. In fact, the deriva-

tion had to be limited to the plane stress and plane strain case for which the

4analytical expressions for the energy release rate G and the crack opening

*displacements could be derived (see Sih, et al. 1965, and Hoenig 1979). Even

though these expressions for a single crack were obtained in a closed form,

the implicit and explicit dependence on the overall compliance (track induced

anisotropy) necessitated use of an iterative predictor-corrector scheme to

compute the mechanical response. Fortunately, in the considered case of uniax-

ial tension the convergence was found to be very rapid and the computational

effort rather trivial. This, of course. will not be true in the case of non-

proportional loading programs during which the status of individual cracks

4 could change from open to closed and back during the deformation process.

Additionally, it was possible [5,11] to determine simple upper and lower

bounds on the total strain and relate the proposed model to the well-known

Budiansky, O'Connell (1976) theory for the solids weakened by an isotropic

distribution of cracks.

The normalized stress-strain curves computed according to TM and SCM are

plotted in Fig. 6. Despite rather large errors inherent to the simplifica-

tions on which the TM is based it must be kept in mind that, in the case of

Z4
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concrete, the final rupture load seldom, if ever, exceeds the load (o at

the onset of the nonlinear response (first cracking) by a factor of more than

2.5. For q/qo = 2.5 the error of the TM is barely 10 percent. Conse-

quently, at least for the case of tension the TM is sufficiently accurate.

The degree of the anisotropy m is plotted in the Fig. 7. As expected in the

latter stages of the process the response tends back to the isotropic.

A short excursion into dynamic problems [3,7] was made primarily to test

the feasibility of the basic concepts. Despite radical simplifications the

proposed model, simplified to bare bones, was still able to duplicate all

major trends observed in experiments.

111.4 Unlaxlal Compression

The mesomechanics of the damage evolution in uniaxial compression is a

great deal more complicated than in the preceding case (see Brace and Bombo-

lakis 1963, and Santiago and Hilsdorf 1973). In absence of tensile

macro-stresses the interfacial cracks originally grow in the Mode II along the

facet. After reaching the facet edge they kink in the direction of the com-

pressive axis (see also M. Kachanov 1982, Horii and Nemat-Nasser 1985). These

kinked cracks initially grow in a stable fashion with the increasing force

until at a certain level of the axial compression they become unstable. The

instability point strongly depends on the lateral confinement and, in fact,

the failure mode itself changes beyond the transition point (Paterson 1978).

The studies performed within the scope of this project were restricted to

the analyses of unconfined specimens (8,11]. The analysis was not as elegant

as in the preceding case since the crack opening displacements of the kinked

crack cannot be derived in analytical form even for a crack enveloped by an

isotropic solid. Nevertheless, it was possible to determine approximate

expressions which were in a close fit with the numerical computations.

0
J.
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The stress--strain curves for uniaxial compression [81 are plotted In Fig.

a"

8 (no confinement) and Fig. 9 (small confinement). The apparent Poisson's

ratio is depicted in Fig. 10 (no confinement) and Fig. 11 (with small confine-

ment). In all cases the experimentally measured strains were replicated

rather well by the proposed model. The absence of the data regarding the

sieve grading of the tested specimens did not allow further parametric stud-

ies. This rather simple model was only partially checked using the SCM in

IV. SUMARY AND CONCLUSIONS
0

0 .7 The principal objective of this program was to explore the least restric-

tive set of assumptions and simplifications leading to a constitutive theory

for brittle deformation processes of concrete which: (i) will reflect the

salient aspects of the physical phenomenon and (ii) still be simple enough for

practical applications. These conflicting requirements are found to be satis-

fied by models which either completely or partially ignore the crack

interaction but, in return, admit a closed-form, analytical solution.

In the case of homogeneous states of stress of unconfined brittle solids,

the ultimate failure emphasizes runaway propagation of a single, critical

defect at relatively low crack density. Consequently, the simplest model,

totally ignoring the crack interaction should be expected to be of adequate

accuracy.

In the presence of lateral confinement above the transition point at the

incipient localization (just ahead of the apex of the stress-strain curve),

the crack interaction cannot be any more neglected. Within this relatively

short phase of the deformation process, the proposed models will underestimate

.0

W%,



.. W .V J . . . . W IF.

* PAGE 24

the inelastic straln. The ensuing increase in accuracy in the determination

of the inelastic strains alone will not justify the attendant increase in com-

plexity. However, a rational estimate of the macro-failure must obviously

' incorporate direct interaction of closely-spaced defects.

"- At this initial stage of its development this mesomechanical analytical

-F model offers ample encouragements for the future. The ability of the model in

duplicating the experimental results without using additional 'fudge' constant

presents a strong impetus for the conduction of new, more complex studies. In

that sense the present achievements constitute a sound foundation and a basic
'.-.

'., building block for the establishment of a versatile predictive tool useful in

the design of runways and protective structures in the future.
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v"Fig. I The hypersurface f -0 separating all cracks into those that were
* already destabilized (upper right corner) from those that retained

their original size.
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